手机浏览器扫描二维码访问
阿贝尔认为,会有很多的数学问题都会不自觉的转化成级数的问题。
而研究级数的问题,最重要的只有一点,就是级数是不是发散的。
阿贝尔认为发散的级数就没有了研究意义,只有收敛的级数才是有价值的,所以只要数学问题与收敛的级数联系在一起,那还有价值,值得研究下去。
可是,如果才能快速的判断级数是否是收敛的呢?
一般要根据级数的性质来看的。
阿贝尔还是希望能找到简单的数学方法可以快速的判断级数是否是可以收敛的。
级数如果带有X变量的情况下,带入什么样的值才能达到收敛的效果呢?
阿贝尔认为:
1.如果幂级数在点x0处(x0不等于0)收敛,则对于适合不等式|x|
2.反之,如果幂级数在点x1处发散,则对于适合不等式|x|>|x1|的一切x使这幂级数发散。
这样去假设,是因为幂级数有单调性,这种单调性看似简单,但是却很重要。
喜欢数学心请大家收藏:(aiquwx)数学心
请勿开启浏览器阅读模式,否则将导致章节内容缺失及无法阅读下一章。
和扶弟魔老婆离婚后,我送她全家升天 重生后在前世死对头怀里兴风作浪 从流民到皇帝,朕这一生如履薄冰 糟了,那妖女也重生了! 要离婚你高冷,再婚又发疯? 苟在末日,独自修仙 庆余年:范府大宗师 全家逼我离婚,现在后悔有用么 CS:不是,你的残局靠请神啊? 一本杂录 重生79,离婚后知青老婆她后悔了 重生1961,开局相亲对象就被截胡! 死亡来信 末世降临:我招收下属,获得百倍物资 离婚后,傅先生对她俯首称臣 我与仙子不两立 聊天群:开局获得赛亚人血脉 带白月光回家,我离婚你悔啥? 弃我选白月光?我离婚你疯什么! 系统盯上龙椅后,公主天天作死
本书旨在打造第一刁民!...
盛夏不老不死了上千年,看尽了想到想不到的各种热闹。没想到,她却也成了别人眼里的热闹,在一群不靠谱参谋的参谋下,屡战屡败,屡败屡战本闲初心不改,这本立志要写回言情了!...
千万年前,李七夜栽下一株翠竹。八百万年前,李七夜养了一条鲤鱼。五百万年前,李七夜收养一个小女孩。今天,李七夜一觉醒来,翠竹修练成神灵,鲤鱼化作金龙,小女孩成为九界女帝。这是一个养成的故事,一个不死的人族小子养成了妖神养成了仙兽养成了女帝的故事。...
穿越加重生,妥妥主角命?篆刻师之道,纳天地于方寸,制道纹于掌间!且看少年段玉重活一世,将会过出怎样的精彩?...
他曾是圣殿国王,四大洲只手遮天,却因心爱女人的背叛,险些命丧黄泉。为复仇,他踏上回归路。在酒吧昏暗的角落,有佳人绝色,一个精彩纷呈的故事,就此展开...
陆家有两个女儿,小女儿是天上的月亮,大女儿是阴沟里的死狗。陆妈你长得不如你妹妹,脑子不如你妹妹,身材不如你妹妹,运气不如你妹妹,你有什么资格过得好,有什么资格幸福?陆微言姐姐,你的钱是我的房子是我的,你男朋友也是我的。你就安心地当又穷又没人要的老处女吧。陆一语凭什么?我也肤白貌美大长腿好么?分分钟能找个男人...