手机浏览器扫描二维码访问
施莱夫利是瑞士的几何学家,1814-1895年活了80多岁。
在1850年的时候,他开始深入思考一个很有意义的问题。
就是高维空间的问题。
他知道在亚里士多德时代,普遍人认为世界是有3维空间的。
即使是有4维空间,也不容易想象。
但是,也不是不可以研究的。
这其中,可以用很都角度去研究高维度空间的问题。
研究立体几何图像,可以投影在2维平面中。
所以研究4维物体,可以投影在三维空间中来研究。
很多东西,即使没有办法想象到,但也可以想到很多基本的东西,比如勾股定理在高维空间的计算中也是实用的。
而今天,施莱夫利想从最简单的角度来想高维空间的问题,也是一种规律。
那就是单形,也就是几何中最基本的形状。
0维单形是点,1维单形是线段,2维单形是三角形,3维单形是4面体等等。
按照以上来看,单形在0、1、2、3、4、5维空间中。
对应单形点的个数分别为1、2、3、4、5.
对应单形线的个数为1、3、6、10、15,这个可以数一数。
对于面、甚至体必然也是存在着同时也重要的,但是对此问题,很多数学家都犯了难,表示很难数。
而对施莱夫利,他找到一个奇妙的办法,就是他突然发现1、3、6、10、15这个数字与杨辉三角中第三排的数字对应。
不仅仅是这样的数字跟高维单形的线的个数之后是吻合的,而且更厉害的是,杨辉三角中第四排和第五排的数字包含了面个数和体个数的信息。
施莱夫利找到很好的办法,很简单的得出了,对应单形的面的个数0、1、4、10、20个。
对应体的个数为0、0、1、5、15个,这个光靠想象的去数,是很不容易的,但用杨辉三角特别容易得到。
甚至连4维体的个数为0、0、0、1、6等等。
施莱夫利知道研究高维度的很多问题可以用杨辉三角,只是杨辉三角本身他也需要思考一阵了。
如果杨辉三角有了这种能力,说明它有一种整合高维空间的能力。
所以他开始考虑高维杨辉三角,这成为他的习惯。
但三维杨辉三角的绘制有困难。
他试图想看看是不是有更多的东西会符合杨辉三角,同时把高维杨辉三角转化成二维的杨辉三角问题。
喜欢数学心请大家收藏:(aiquwx)数学心
请勿开启浏览器阅读模式,否则将导致章节内容缺失及无法阅读下一章。
糟了,那妖女也重生了! 离婚后,傅先生对她俯首称臣 要离婚你高冷,再婚又发疯? 死亡来信 庆余年:范府大宗师 聊天群:开局获得赛亚人血脉 末世降临:我招收下属,获得百倍物资 弃我选白月光?我离婚你疯什么! 系统盯上龙椅后,公主天天作死 重生后在前世死对头怀里兴风作浪 重生79,离婚后知青老婆她后悔了 带白月光回家,我离婚你悔啥? 重生1961,开局相亲对象就被截胡! 从流民到皇帝,朕这一生如履薄冰 和扶弟魔老婆离婚后,我送她全家升天 苟在末日,独自修仙 全家逼我离婚,现在后悔有用么 CS:不是,你的残局靠请神啊? 我与仙子不两立 一本杂录
本书旨在打造第一刁民!...
盛夏不老不死了上千年,看尽了想到想不到的各种热闹。没想到,她却也成了别人眼里的热闹,在一群不靠谱参谋的参谋下,屡战屡败,屡败屡战本闲初心不改,这本立志要写回言情了!...
千万年前,李七夜栽下一株翠竹。八百万年前,李七夜养了一条鲤鱼。五百万年前,李七夜收养一个小女孩。今天,李七夜一觉醒来,翠竹修练成神灵,鲤鱼化作金龙,小女孩成为九界女帝。这是一个养成的故事,一个不死的人族小子养成了妖神养成了仙兽养成了女帝的故事。...
穿越加重生,妥妥主角命?篆刻师之道,纳天地于方寸,制道纹于掌间!且看少年段玉重活一世,将会过出怎样的精彩?...
他曾是圣殿国王,四大洲只手遮天,却因心爱女人的背叛,险些命丧黄泉。为复仇,他踏上回归路。在酒吧昏暗的角落,有佳人绝色,一个精彩纷呈的故事,就此展开...
陆家有两个女儿,小女儿是天上的月亮,大女儿是阴沟里的死狗。陆妈你长得不如你妹妹,脑子不如你妹妹,身材不如你妹妹,运气不如你妹妹,你有什么资格过得好,有什么资格幸福?陆微言姐姐,你的钱是我的房子是我的,你男朋友也是我的。你就安心地当又穷又没人要的老处女吧。陆一语凭什么?我也肤白貌美大长腿好么?分分钟能找个男人...